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APPLICATION OF THE KRIGING METHOD
FOR GRAVITY DATA INTERPOLATION

Abstract. This article examines the application of the kriging method for the interpolation of gravimetric data. Three approaches are analyzed — Ordinary Kriging,
Universal Kriging, and Empirical Bayesian Kriging — with the aim of constructing spatially continuous models of gravity anomalies. The methodology is implemented
using the ArcGIS Pro toolkit. Particular attention is given to comparing the interpolation accuracy based on cross-validation indicators, including root mean square error
and mean prediction error. The results show that EBK and UK with a linear trend provide the highest accuracy under various data characteristics, especially in the presence
of trends and sparse observations. Kriging demonstrates high robustness, interpretability, and adaptability to the spatial distribution of gravimetric measurements, making
it an effective tool in gravimetry and geoid modeling.
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I'paBUMeTPHUSJIBIK JepeKTepAi HHTePNOIANUIAY YIIiH KPUKUHT JIiCiH KOJIaHy

Amnparna. by Makana/ja rpaBUMETPHSUIBIK JEPEKTep/i HHTEPIOJSIMSIIAY YIiH KDUKMHT SIiCiH KOJIIaHy KapacThIpbUIabl. [ paBUTALMSIIBIK aHOMAIIHSIIAPIBIH KeHiC-
TIKTIK Y3/iKCi3 MOZIENbJICpiH Kypy MaKcaTbIHAa yiI Tocin tanaanansl — Ordinary Kriging, Universal Kriging sxone Empirical Bayesian Kriging. Onicteme ArcGIS Pro 0ar-
JlapiIaMalibIK Kypasibl HEeri3iHae XKy3ere achIpbliFaH. VIHTepHOsIus IIITH KPOCcC-BaIuAaLis KOPCETKIIITepi (opTalia KBagpaTThIK KaTe MEeH 00/pKaM KaTeciHiH opTaria
MaHi) OOMBIHIIA CANBICTBIPYFa epeKile Hazap ayaapbuiansl. Hotmkenep EBK oHe chI3bIKTBIK TpeHi 6ap UK oxmicTepi apTypii JepekTep cHmaTTamMaaapbIHia, acipece
TPEHJTEeP MEH CUPEK OJIIIEeMIep JKaFJaifbIH/Ia, )KOFaphl JANIIK KAMTaMachl3 eTeTiHiH kopceTei. KpHKUHT 9/1ici rpaBUMETPHUSIIBIK OJIIIEMISPIiH Tapally epeKIIeTiKTepiHe
JKOFaphl TYPAKTBUIBIK, TYCIHIKTLTIK KOHE OSHIMIITIK TaHbITa/(bl, OYJ OHBI TPABUMETPHUS MEH TC€OH/IThI MOJICIIbACY/IC THIM/I Kypasl eTe/i.

Tyiinoi co3oep: epasumempus, KpUKUH2, KeHICMIKMIK UHMEPRONAYUS, 6APUOSPAMMA, 2E0CMAMUCIIUKA, 2€0UO, 2PABUMAYUANBIK OPIC.

HpﬂMeHeHl/le MeETOAA KPUTUHT AJ HHTEPIMOJAIUUA TPABUMETPUHYCCKUX JAHHBIX

AnHoTanms. B crathe paccMarpuBaeTcst IPHMEHEHHE METOa KPHKHHTA JUIS MHTEPIOSIUN TPaBUMETPHIECKUX AaHHBIX. Mccnenyrores tpu moaxoga — Ordinary
Kriging, Universal Kriging u Empirical Bayesian Kriging — ¢ 1ieJibio ocTpoeH s IIPOCTPaHCTBEHHO-HEPEPIBHBIX MOJENCH TPaBUMETPUUCCKIX aHOMAHiT. MeToaoaorus
peann3oBaHa ¢ MCIOIb30BaHHEeM HHCTpyMeHTapust ArcGIS Pro. Oco6oe BHUMaHHE yIEIeHO CPABHEHHIO TOYHOCTH MHTEPIOJISLHN Ha OCHOBE MOKa3aTeNell Kpocc-Balli-
JIalnK, BKII0Yasi CPEAHEKBAIPATHYHYO OIIMOKY M CPEHION OIIMOKY mpejckasaHus. Pesysnbrarsl nokaseiBatot, 4o EBK n UK ¢ JIMHEHHBIM TPEHIOM 00€CIeYnBaOT
HAMIIYHIIyI0 TOYHOCTH IPH PA3IUYHBIX XapPaKTePHCTHKAX JaHHBIX, 0COOCHHO B YCIOBHSX HAJTMYHS TPEHIOB U PA3PE)KCHHBIX HAOMIONCHNH. MeTo KpHKHHTA JeMOHCTPH-
PYeT BBICOKYIO YCTOIYHBOCTD, HHTEPIPETHPYEMOCT H aJalTHBHOCTH K OCOOCHHOCTSIM PACIIPEACIICHNS TPABUMETPHICCKAX H3MEPEHHIT, UTO IeIacT ero 3(GheKTHBHBIM

HWHCTPYMCHTOM B T'PAaBUMETPHUH U MOJACIMPOBAHUY Ireonaa.

Knrwouesvie cnosa: epasumempus, KpUKuHe, npoCmpancCmeeHrds UHMepnoaAyus, 6apuocpamma, 2eocmamucmuxa, 2eouo, epasumayuorHoe noiue.

Introduction

Kriging is one of the most effective geostatistical interpo-
lation methods, widely used in gravimetry for modeling the
gravity field and constructing geoid models. Its popularity
stems from its ability to account for the spatial autocorrelation
of data and to provide optimal estimates with minimal error
variance [1]. Modern software platforms such as ArcGIS Pro
offer various kriging techniques, including Ordinary Kriging,
Universal Kriging, and Empirical Bayesian Kriging. These
methods allow for adaptation to different data characteristics,
including trends and heterogeneities, making them particular-
ly valuable for analyzing gravity anomalies and constructing
geoid models'.

Recent research on the application of machine learning
methods for predicting gravity anomalies highlights the po-
tential of these approaches to enhance interpolation accuracy,
particularly in regions with sparse or irregular observation net-
works. For instance, Zhanakulova et al. (2025) compared the
performance of various machine learning algorithms with tra-
ditional interpolation techniques, including kriging, and found
that in mountainous regions, kriging provided higher accuracy
and greater stability than other methods?®. Luther (2025) exam-
ined the performance of machine learning and kriging in mod-
eling gravity anomalies. When a sufficient amount of training
data was available, neural network models — such as XGBoost
and CNN —demonstrated superior accuracy in capturing com-
plex patterns. However, kriging proved to be more robust
to local noise and offered better interpretability. Wang et al.
(2019) proposed using convolutional neural networks to re-
construct gravity and magnetic data with large missing areas.

While neural networks were successful in handling datasets
with significant gaps, kriging yielded better results in cases
with fewer missing values and the presence of spatially auto-
correlated noise [2].

At the same time, foundational works in the field of geode-
sy — such as the study by Torge and Miiller (2012) — emphasize
the importance of accurately modeling the Earth’s gravity field
and the role of various interpolation methods in this process.
The authors examine different aspects of gravimetric measure-
ments and their application in geoid modeling, highlighting
the relevance of selecting an appropriate interpolation method
depending on the specific characteristics of the task at hand
[3]. Toth and Volgyesi (2006) investigated the capabilities
of kriging and least-squares collocation (LSC) for predicting
gravity field values based on gradient data. They concluded
that under limited resource conditions, kriging is preferable,
as it requires less computational effort and is more robust to
sparse observation networks [4].

The choice of interpolation method — whether traditional
kriging or modern machine learning approaches — should be
guided by the characteristics of the input data, the required
level of accuracy, and the specific nature of the problem being
addressed. An integrated approach that leverages the strengths
of various methods can yield optimal results in gravity field
modeling and geoid construction [5, 6, 7].

Fedorchuk (2024) conducted a comparative analysis of dif-
ferent interpolation techniques using data from WGM2012.
The study found that kriging provides high accuracy when
constructing regular grids of gravity anomalies, particularly
when data points are evenly distributed. Kriging outperformed

'ESRI. (2022). Kriging methods in ArcGIS Pro [Help documentation]. URL: hitps://pro.arcgis.com (retrieved May 29, 2025). Access mode: open.
’K. Zhanakulova. Application of machine learning methods for gravity anomaly prediction // Geosciences. 2025. V. 15. No. 5. Article 175. URL: https://doi.org/10.3390/

geosciences15050175 (retrieved May 29, 2025). Access mode: open.
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inverse distance weighting, minimum curvature, and radial
basis function methods, especially in scenarios with moder-
ate to high-density GNSS-gravimetric observations. The au-
thor emphasizes that kriging serves as a reliable tool for local
refinement of geoid models based on global models such as
EGM2008 and WGM2012, particularly in mountainous and
transitional regions where topographic effects are most pro-
nounced [8].

Yang et al. (2024) applied kriging to assess the resolving
power of satellite-derived gravity anomaly models. Their re-
search demonstrated that kriging enables local refinement of
global datasets (e.g., DTU17 and SIOv32.1), especially in ar-
eas where satellite data lack sufficient density and precision®.
In this context, kriging was essential for restoring residual
anomalies and estimating the effective elastic thickness of
the lithosphere, thereby facilitating the interpretation of uplift
mechanisms in active tectonic regions.

Liu et al. (2019) developed a modified kriging technique
incorporating «topographic weighting» to enhance accuracy
in marine gravimetry. This method significantly improved re-
sults in areas with limited bathymetric data and substantially
reduced discrepancies when reconciling satellite altimetry data
with navigational measurements [9].

Materials and Methods

One of the most widely applied approaches to spatial in-
terpolation is geostatistical modeling based on the kriging
method. Kriging is an optimal linear unbiased interpolator that
relies on the assumption of spatial autocorrelation among ob-
served values. It provides weighted predictions in continuous
space, allowing for the incorporation of both the structure of
spatial variability and the level of confidence in the input data.
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Figure 1. Study Area Map.
Cypert 1. 3epTTey ayMarbIHbIH KapTachl.
Puc. 1. Kapra TeppuTOpHH HCCIe0BAHUSA.

In kriging, the predicted value at any location is comput-
ed as a linear combination of the values obtained at sampled
points, with corresponding weights. These kriging weights are
selected to minimize the variance of the predicted value. They
depend on the choice of the variogram model, the distances
between the measured and predicted points, and the overall

spatial structure of the data distribution.

Ordinary kriging is a widely used interpolation method that
assumes a stationary random process with a known semivario-
gram and an unknown but constant mean, which is either esti-
mated or ignored in the modeling process. It ensures unbiased
estimation of spatial variables.

The study area is presented on the map and covers the Turk-
istan Region of the Republic of Kazakhstan, where digitized
gravity anomaly measurement points were collected for sub-
sequent analysis.

As part of this study, three types of kriging were applied:
Ordinary Kriging, Empirical Bayesian Kriging, and Universal
Kriging. All of these methods are based on variational analy-
sis, but they differ in their approaches to variogram modeling
and in how they handle uncertainty in model parameters.

Ordinary Kriging assumes first-order stationarity, meaning
that the mean is constant but unknown throughout the study
area. Constructing an interpolation model requires a priori se-
lection and parameterization of a theoretical variogram mod-
el — commonly spherical, exponential, or Gaussian. The vario-
gram describes how the variance between values changes with
distance and serves as the foundation for computing interpola-
tion weights. Key parameters include the sill (the variance at
which the variogram levels off), the range (the distance beyond
which spatial correlation becomes negligible), and the nugget
effect (representing microscale variation or measurement er-
ror). This method is sensitive to the choice of variogram model
and typically requires manual adjustment, particularly in the
presence of anisotropy or spatial trends in the data.

Geostatistical Wizard - Kriging - Cross validation

d Error | Normal QQ Plot | Distribution Summary | Table

Predicted | Error | Standardize:
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0.155

0,042
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0239 Average Standard Error

Figure 2. Kriging cross-validation results.
Cyper 2. KpukuHr aiciHin Kpocc-Bajanaanus
HOTHIKeJIepi.
Puc. 2. PesynbTarsl Kpocc-BaTuAaALMH METOAA KPUKHHIA.

Empirical Bayesian Kriging (EBK) is a modification of the
classical kriging approach in which variogram parameters are
treated as random variables and are estimated through repeat-
ed simulations. The method employs a Bayesian approxima-
tor that allows for the automatic incorporation of uncertainty
in modeling spatial correlation. This makes EBK particular-
ly well-suited for handling heterogeneous, noisy, or sparsely

’Yang, D., Zhang, L., & Chen, X. Using kriging to assess resolution of satellite gravity models. Remote Sensing. 2024. V.16(3). Article 423. URL: https.//doi.org/10.3390/

rs16030423 (retrieved May 29, 2025). Access mode: open.
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sampled datasets — conditions frequently encountered in the
interpolation of gravity anomalies.

EBK eliminates the need for manual variogram fitting
and can deliver more robust results under similar condi-
tions. Its ability to model parameter uncertainty directly
enhances its performance in cases where classical kriging
methods may be less reliable due to data limitations or
non-stationarity.

Measured (10%) Count

0.155 Average CRPS
Inside 90 Percent Interval

Inside 95 Percent Interval

Mean

Root-Mean-Square

Mean d
Root-Mean-Square Standardized

Average Standard Error

2013 1742 1471 12 -0929 0658 0387 -0,

*Value = Reference Line = Regressi

Regression function: 1,00088089308276 * x + 0,0418113142168295

< Back Finish |

Figure 3. Empirical Bayesian kriging cross-validation
results.
Cypet 3. DMnupHKAaJIbIK 0aiiec KPMKHHTI iciHiH Kpocc-
BaJIW/IAIUs HITH:KeJIepi.
Puc. 3. Pe3yabTaThl Kpocc-BaauAaLMM MeTOAA
OMNUpHYecKUil 0aliecOBCKHII KPUKHHT.

Universal Kriging (UK) is a variant of kriging that accounts
for the presence of a global trend in the spatial distribution
of data. Unlike Ordinary Kriging, which assumes a constant
mean throughout the study area, Universal Kriging allows the
mean to vary — typically as a linear or polynomial function of
spatial coordinates.

Geostatistical Wizard - Kriging - Cross validation o x
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Figure 4. Universal Kriging cross-validation results.
Cypet 4. YHuBepcaabl KPpUKHHTI diciHiH Kpocc-
BATMIALUS HITHKeJIePi.

Puc. 4. Pe3yibTaThl Kpocc-BaJUAALMI METOIA
YHHBEPCAJIbHOI0 KPUKHHTA.

Universal Kriging with a linear trend represents an optimal
compromise between deterministic and stochastic modeling,
offering high-quality interpolation of gravimetric data in the
presence of weak global directional trends. This makes UK
particularly suitable for scenarios where the data exhibit grad-
ual spatial drift or underlying systematic variation across the
region of interest.

The methods under consideration are based on linear inter-
polation models and, on average, provide accurate approxima-
tions of values without systematic bias. However, they differ
in terms of automation, trend incorporation, and robustness
to sampling characteristics. A comparative analysis of these
methods using the same set of gravimetric data enables not
only the evaluation of differences in spatial prediction accu-
racy but also a reasoned justification for selecting the most
appropriate geostatistical model for subsequent applications in
gravimetry and geoid modeling.

In spatial analysis, three functional models are commonly
used: spherical, exponential, and Gaussian. In this study, the
spherical model was selected, and is represented by the fol-
lowing equation:

&
y(h) = ¢o + c{% = i(’f) } forO0<h<r=cy+c

for h>r =0 for h =0,

where
¢ — spatially correlated variance;
r is the correlation radius.
The quantity ¢o + ¢ is known as the «threshold».
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Figure 5. Selection of the Spherical Variogram Model.
Cyper 5. Cepanbik BapuorpaMmma mMojejiH TaHaay.
Puc. 5. Boi0op cepuyeckoii BApMOrpaMMHONH MOJETH.

Results and discussion

As part of the study, three geostatistical interpolation
methods were tested: Ordinary Kriging (OK), Empirical
Bayesian Kriging (EBK), and Universal Kriging (UK) with
a first-order trend. All methods were implemented in the
ArcGIS Pro software environment using a digitized data-
base of Bouguer anomalies, followed by validation through
cross-validation.
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Table 1

Comparative Analysis of Kriging Methods Based on Cross-Validation Metrics for Gravity Anomaly Interpolation

Kecme 1

I'pasumayuanvlK aHOMARUANAPOLI UHMEPRONAUUATAY YULIH KPOCC-8ATUOAUUA MEMPUKATIADPD
Hezi3iH0e Kpuzaic 20icmepinin canviCmolpmMaisl maniodaysl

Tabauua 1

Cpagnumenvhulil AHAIU3 MEMOO06 KPUSUH2A HA OCHOGE MEMPUK NEPEKPECHHOIL NPOGEPKU
01 UHMEPRONAYUYU AHOMANUIL 2PAGUM ALY

. Root Mean Square . Average Standard
Interpolation Method Error (RMSE) Standardized RMSE Error (ASE) Comment
Ordinary Kriging Simple and robust model
(OK) 13213 04113 3.1902 without trend consideration
Empirical Bayesian Automated model accounting
Kriging (EBK) 0.8749 0.7493 11373 for local variability
Universal Krigin Takes into account the global
gmne 0.8622 0.4365 1.9215 trend, provides a high level of
(UK) .
accuracy and stability

The simplest model — Ordinary Kriging (OK) — demon-
strated stable but less accurate results (RMSE = 1.32). The
standardized RMSE was 0.41, indicating a moderate under-
estimation of variance and an acceptable prediction error. As
this method does not account for a global trend in the spatial
data, it is most suitable for cases with isotropic distributions
of anomalies.

Empirical Bayesian Kriging (EBK) achieved higher accu-
racy (RMSE = 0.87) and offered a better balance between pre-
dicted values and estimated errors. The automatic generation
of semivariograms and the inclusion of localized models make
EBK particularly effective under conditions of weak stationar-
ity and heterogeneous spatial structure.

Universal Kriging (UK) with a first-order trend produced
the highest interpolation quality among the methods tested
(RMSE = 0.86), with a standardized RMSE of 0.43. This
suggests that incorporating a global linear trend allows for
the modeling of systematic variations in Bouguer anomalies
across the study area without compromising physical inter-
pretability. However, applying a second-order trend led to
model overfitting and a loss of geostatistical significance, as
evidenced by an extremely high standardized error (exceed-
ing 37). Therefore, this variant was excluded from further
analysis.

In conclusion, EBK and UK with a first-order trend are the
most optimal approaches for the spatial interpolation of grav-
imetric data in this study. The choice between them should be
guided by the analytical objective: Universal Kriging is more

appropriate for modeling global spatial patterns, whereas Em-
pirical Bayesian Kriging provides more robust results in the
presence of local heterogeneity.

Conclusion

The conducted study confirms that kriging remains one of
the most reliable and accurate tools for the spatial interpola-
tion of gravimetric data. The analysis of its three variants —
Ordinary Kriging, Universal Kriging, and Empirical Bayesian
Kriging — highlighted their respective strengths depending on
the structure of the input data. The highest accuracy under
conditions of spatial trends and heterogeneity was achieved
by EBK and UK. EBK proved particularly effective when the
number of observations was limited, while UK excelled in the
presence of a global trend.

Kriging provides statistically sound estimates, demon-
strates robustness to noise, and adapts well to various spatial
characteristics. These features affirm its applicability as a key
technique in gravity field modeling and the construction of re-
fined geoid models, especially in regions with sparse observa-
tion networks and complex topography.
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